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Abstract 

Thermally induced vacuum polarization stemming from QED radiative corrections to the 

electromagnetic field equations is studied.  The physical behavior of thermal radiation, in the 

nonlinear QED vacuum first described by Heisenberg and Euler, is a problem of some theoretical 

importance in view of its relation to the cosmic microwave background (CMB), early universe 

evolution, and Hawking-Unruh radiation.  The questions of evolution toward equilibrium, 

stability, and invariance of thermal radiation under such conditions are of great interest.  Our 

analysis presents novel aspects associated with photon-photon scattering in a photon gas in the 

framework of quantum kinetic theory.  Within the context of the Euler-Heisenberg theory, we 

show that a homogeneous, isotropic photon gas with arbitrary spectral distribution function 

evolves toward an equilibrium state with a Bose-Einstein distribution. The transient evolution 

toward equilibrium of a gas of photons undergoing photon-photon scattering is studied in detail 

via the Boltzmann transport equation. 



The physical behavior of thermal radiation, in the nonlinear QED vacuum first described by 

Heisenberg and Euler [1], is a problem of some theoretical importance [2] in view of its relation 

to the cosmic microwave background (CMB) [3], early universe evolution [4], and Hawking-

Unruh radiation [5].  In particular, the questions of the evolution toward equilibrium, stability, 

and invariance of thermal radiation under such conditions are of great interest.  In QED, the 

scattering of light by light is described as the result of the production of a virtual electron-

position pair by the two initial photons, followed by the annihilation of the pair into the final 

photons.  The probability of this process to occur, or equivalently, the scattering cross section, is 

calculated by summing contributions from each of the six “square” Feynman diagrams which 

describe the interaction [6].  In this paper, this problem is addressed within the context of the 

photon-photon scattering cross-section and it will be shown that, under specific assumptions 

defined below, a photon gas with an arbitrary spectral distribution function evolves toward an 

equilibrium state with a Bose-Einstein distribution.  The path followed here describes 

interactions in terms of a differential scattering cross-section, which is directly related to the S-

matrix formalism of QED and manifestly conserves all important physical parameters, including 

energy, momentum, spin, and charge.  The transient evolution of a gas of photons in the presence 

of photon-photon scattering is described by the Boltzmann transport equation.  The fundamental 

description attained here is thus relatively simple, intuitive and transparent. 

Let us first recall some general characteristics of a gas of particles undergoing elastic scattering.  

It is well known from kinetic theory that a statistical ensemble of interacting particles in a non-

equilibrium macrostate left to itself will tend toward a state of equilibrium in accordance with the 

Boltzmann transport equation, 
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where 
1 2 1 2, , ,n n n n   are distribution functions of the momenta 

1 2 1 2, ; , p p p p  of the colliding 

particles and R is the collision kernel containing the detailed physics of the specific scattering 

process [7,8,9].  The two terms in the square brackets give respectively the numbers of particles 

entering and leaving a particular state as a result of collisions.  The parameter  , which may 



take on three different values,  1,0,1   , allows for the study of fermions and bosons.  For 

elastic two-particle collisions, there are five independent collision invariants; namely, the total 

energy E, the three components of momentum and the particle number.  One can verify that these 

quantities are conserved by equation (1).  According to Boltzmann’s H theorem, this process 

must be accompanied by an increase in the entropy of the gas until equilibrium is reached when 

the entropy production ceases.  The condition of vanishing entropy production determines the 

equilibrium distribution function, given by: 
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Indeed, the integral in equation (1) vanishes identically for distribution functions of this form.  

These are the familiar Maxwell-Boltzmann ( 0  ), Fermi-Dirac ( 1   ) and Bose-Einstein (

1  ) distribution functions in a coordinate frame with bulk velocity U.  In the rest frame of the 

gas, 0U , the distribution functions are characterized by the constants   and   determined by 

number density and energy density conservation.  It is worth noting that the formalism described 

above is very general and can be applied to a broad class of scattering problems, including 

collisions in plasma, quasi-particles in a Fermi liquid, and the Comptonization of isotropic 

photons by electrons.  Comptonization of the CMB, indeed, has been an area of interest in the 

astrophysical arena for many years [10].  In the Thomson limit, one typically approximates 

equation (1) by invoking the Fokker-Planck expansion and obtains a differential equation first 

described by Kompaneets [11].  The Kompaneets equation then describes the time evolution of 

photons and electrons toward their respective equilibrium distributions given by equation (2).  In 

this paper, we will apply this general approach to derive the time evolution of an isolated photon 

gas undergoing nonlinear photon-photon scattering.  It is evident before diving into specifics of 

the collision kernel that the equilibrium distribution will follow Bose-Einstein statistics for the 

reasons discussed above.  It is, however, of interest to know how an arbitrary photon gas tends to 

its final equilibrium state, i.e. the transient evolution of the photon distribution function in the 

presence of photon-photon scattering. 



The technical steps of the derivation start from the photon-photon differential scattering rate.  

The total scattering rate is expressed in terms of manifestly covariant quantities in the S-matrix 

formulation.  Next, using the symmetries of the problem, the differential rates of production of 

scattered photons and loss of incident photons are derived for arbitrary isotropic spectral 

distributions.  Finally, the integro-differential evolution equation thus obtained is applied to 

specific cases of interest.  Explicit calculations are carried out showing transient evolution of a 

photon gas under photon-photon scattering. 

It is also important to emphasize the assumptions under which the derivation is performed and 

our conclusions are valid.  First and foremost, the Heisenberg-Euler theory must hold – the 

photon energy is small compared to the electron rest energy and fields weak relative to the 

Schwinger critical field.  Second, the mean free path between photon-photon collisions must 

remain much longer than the wavelengths involved, so that the photon energy is well defined.  

Another key point is that the photon number density and energy density conservation are 

conserved.  Interaction with matter can change one or both quantities, hence, for this assumption 

to be valid, there must be negligible matter content in the region of interest.  While 4-momentum 

conservation and photon number conservation are evident requirements for a given interaction, 

volumetric density conservation implies that the system is homogeneous, isotropic and 

unbounded, and that the interaction time scale is short compared to all other time scales. In 

reality, at any given time, part of the energy-momentum content of the system appears in the 

form of electron-positron pairs, thus diminishing the electromagnetic component of the 4-

momentum and introducing more scattering mechanisms; this is neglected in the present 

analysis. 

The transition rate density dW of a general scattering process in which two incident particles 

collide and are transformed into two outgoing particles, h k h k    , is [6]: 
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Natural units are used throughout: 1c  .  Energy is measured with respect to the electron rest 

energy.  For photons, ( , ) ( , )k k kp E k k   p k  and 0k k   .  Photon-photon scattering in 

vacuum is a well known quantum electrodynamic process.  The magnitude square of the 

scattering amplitude 
2

M  for unpolarized photon-photon scattering in the Euler-Heisenberg 

regime of low energies ( k m) expressed in terms of the Mandelstam variables [6], 
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In the center of mass (CM) frame where the process is most often presented, both incident and 

scattered photons have the same energy, h k h k    , as illustrated in Figure 1, and for 

energies much less than the electron mass, the photon-photon differential scattering cross-section 

is given by [6]: 
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where 
CMk  and 

CM  are quantities measured in the CM frame.  

Continuing with the transition rate density calculation, the three-dimensional delta function in 

momentum space can be eliminated by integration over 3

hd p  and noting h h k k
   p p p p .  

Here it will be convenient to apply the remaining energy conserving delta function to an angular 

integral rather than a radial integral as is customary.  Using the relation [12], 
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and applying the same analysis to the time reversed process, equation (1) becomes 
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where, 
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The incident 4-wavenumbers defined in spherical coordinates are: 
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Note that since the problem is isotropic by construction, we may align the z-axis with the 

scattered photon,  1,0,0,1k q  , without loss of generality.  The solid angle differential 

elements are sinhd d d     and sinkd d d    .  The Mandelstam variables now read: 
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As expected from symmetry considerations, the azimuthal angles only appear as a difference, 

    , so we may write 2d d d     .  The integral over the relative azimuthal angle 

  is readily performed using the well-known sifting property of the delta-function:
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s t u  are located at: 
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after a change of variables, cosx   and cosy  .  Proceeding with the integration over  , let 

us define a function ( , , )f h k q  where 

 

   

      

   
 

1 1 2
2

2 2

2

1 1 0

2
2 22 2

1 13
2

2 2
2 2 2

1 1

1 1
( , , ) 2

(2 ) 8

1 1 1 1
1 cos .

1 1 1 cos

f h k q dx dy t tu u s t u d
hkq

k x hk x y h yq
dx dy

h k x y



 




 



  

     

      
    

   

  

 

 (12) 

The Heaviside  -function arises from the requirement 0 2    and ensures that the 

integrand is real.  To proceed, we note that the numerator in equation (12) is a simple polynomial 

over x and y; in addition, the argument inside the square root in the denominator can be 

expressed in terms of its roots, x : 

 
 

 

3 2 2 2

2 2 2

( ) ( ) ( 1) ( 1) ( 1) 2 ( ) ( 1) 2
.

2

k hy q k h q hq y h k q y y k h q hq y k

k h hqy q
x

          

 


  (13) 

Therefore, the integral over x can be rewritten in the form [13]: 
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Here,  2 1F , ; ;a b c x  is the Gauss hypergeometric function.  Values of n range from 0 to 4.  We 

may rewrite f as 
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where 
na  are polynomials in y. 

By inspecting equation (12), it is clear that special attention must be paid to the boundaries of the 

integration domain.  The y integral in equation (15) can be approached by first dividing it into 

two disparate cases.  When q k , the integration region covers the entire interval  1,1y  ; 

when q k , however, the integration region shrinks to  1,1y y , where the lower bound is 

2
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y    .  Integration over y can now be performed in terms of the incomplete beta 

function,  B ; ,x a b  [13]: 
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For q k , after integration over y, the function f itself can be further subdivided into two regions 

based on the value of h: 
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This second division is a reflection of symmetry in the problem. Other than the order of 

integration, neither h nor k is special; hence any feature in the domain of one variable must be 

reflected in the domain of the other. 

Similarly, for the case when q k , the expression after integration over y divides into two 

subdomains: 
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Combining the expressions in Eqs. (17) – (20), we see that f is a continuous and nonnegative 

function that neatly separates into five distinct domains: 
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As illustrated in Figure 2, where the axes are normalized to the scattered photon energy q, the 

domains of f are made up of three rectangular regions and two triangular regions. The function in 

rectangular regions II and III are mirror images – one can go from one to the other by 

interchanging h and k. The triangular border of region IV is necessitated by energy conservation, 

as the energy of the scattered photons cannot exceed the total energy of the incident photons.  

Using this definition of f, the temporal evolution of an arbitrary photon distribution under 

photon-photon scattering may finally be expressed as: 
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As a first example, we examine the behavior of a monochromatic but otherwise random photon 

gas.  The first order response of this distribution is shown in Figure 3.  An initial photon gas 

comprised of a single frequency 
0  will create a band of new frequencies extending from 0 to 

02  peaking at 
0 .  Similarly, when there are two different spectral energies in the photon gas, 

the newly scattered photons will tend to possess energy in between their parent photons, also 

shown in Figure 3. 



The mechanism for the creation of photons with different energies may be summarized as 

follows.  Counter-propagating photons collide head-on and scatter back into photons at the initial 

frequency 
0 .  Co-propagating photons do not interact because they cannot interfere.  

Interference is required because the scattering is mediated by the production and annihilation of a 

virtual electron-positron pair, which has non-zero rest mass.  Interfering photons imply the 

existence of (non-propagating) electromagnetic energy with no net momentum, thus allowing for 

4-momentum conservation between massless and massive particles.  This is directly reflected by 

the Heisenberg-Euler interaction Lagrangian density [1], 
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which is constructed around the Lorentz-invariant quantities F  and G . These quantities are 

identically zero for co-propagating plane waves, reflecting the aforementioned 4-momentum 

conservation requirement.  In equation (23), 
  is the completely anti-symmetric Levi-Civita 

tensor [14].  One can also deduce this fact directly from the nonexistence of the CM frame when 

h and k are collinear. 

All other situations produce photons that, when observed in the rest frame of the photon gas, 

possess energies different from 
0  and determined by geometry; finally 4-momentum 

conservation bounds the maximum photon energy after n collisions to 
0n .  As time marches 

forward, this new distribution of photons will create new photons while removing previously 

scattered photons, and in this way continuously modify the photon spectral distribution. 

To illustrate the process, we will assume that an initial gas of photons can be described by 

Maxwell-Boltzmann distribution and analyze its temporal evolution toward equilibrium.  By 

quantum kinetic theory, the equilibrium distribution is described by a Bose-Einstein distribution.  

The initial distribution is normalized such that the photon number density and energy density are 



identical to that of an ideal blackbody distribution at a given temperature 2/Bk T mc  .  

Therefore, we have ( 0) k
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denotes the Riemann zeta function.  The photon number densities of the initial and equilibrium 

distributions are shown in Figure 4. 

A numerical implementation of our photon evolution model was carried out in Mathematica 

using a simple time-stepping algorithm. The temporal evolution described by equation (22) can 

be well approximated by Euler’s method, 
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as long as t  is suitably small.  At each time step, a new photon distribution is generated based 

on the differential scattering rate over a predefined nonuniform k-grid, which is then used to 

calculate the subsequent time step.  More sophisticated computer algorithms exist which may 

further improve numerical accuracy and computation speed (c.f. Ref [15]).  However, the 

rudimentary numerical scheme used here is sufficient in demonstrating the concept. 

Figure 5 shows the spectrally-resolved rate of change of a photon gas with 0.01   as it evolves 

in time.  At large t, the rate of change tends to zero as the photon gas approaches equilibrium 

state.  It is convenient to define a characteristic time ( )t  as: 
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For the initial Maxwell-Boltzmann distribution used in this calculation, direct numerical 

integration gives
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   at 0t  .  For 0.01  , the characteristic time 

0  is close to 8 million seconds, or 92 days.  Due to the strong 9  dependence, however, the 



characteristic time to reach equilibrium diminishes rapidly at higher temperatures – 
0  reduces 

to mere seconds at 0.05  .  Figure 6 shows a linear time dependence for ( )t , suggestive of 

logarithmic approach towards equilibrium.  The slight deviation at large t is likely attributed to 

numerical artifacts due to the loss of grid resolution as the peak of the spectral change moves 

toward smaller values of k.  Note that it has been implicitly assumed that the evolution timescale 

is much longer than 2 / k , so that it is meaningful to speak of time and instantaneous frequency 

simultaneously. Within the regime of validity of the Heisenberg-Euler theory, this assumption is 

generally very good.   

Applications of the foregoing analysis may now be outlined for the Hawking-Unruh effect and 

early universe astrophysics.  As far as the Hawking-Unruh effect is concerned, let us first recall 

that for an accelerated observer, the vacuum quantum fluctuations appear as thermal radiation, 

with a temperature proportional to the acceleration a [5]: 

 
2 B

a
T

ck
  (26) 

This suggest that, for arbitrarily high acceleration, very high temperatures could be observed in 

that particular frame, leading to the question of whether nonlinear QED effect due to photon-

photon scattering effects may be observed, and potentially violating general covariance 

principles by generating a different photon distribution.  This does not occur, since we have 

shown that the equilibrium Bose-Einstein distribution of the photon gas is unperturbed by 

nonlinear photon-photon scattering under the conditions studied.  In a more general context, the 

gedanken experiment discussed above points to the notion that spin, a key symmetry of the 

Lorentz group, is also fundamentally linked to general covariance. 

The numerical model presented above for the transient evolution of a homogeneous, isotropic 

photon gas within the context of the Euler-Heisenberg nonlinear QED vacuum has been derived 

from fundamental scattering principles and the Boltzmann transport equation.  Transient 

evolution from arbitrary initial photon distribution can be modeled using this formalism.  

Explicit calculations using a Maxwell-Boltzmann initial photon distribution are presented, 



clearly showing temporal evolution towards Bose-Einstein equilibrium.  Results confirm the 

evolution of the radiation content of the Universe, as described in the standard Lambda-CDM 

model since, even at high temperatures and under nonlinear QED (and other) processes, Pauli’s 

spin-statistics relation remains valid, and photons maintain the Bose-Einstein distribution in 

equilibrium.  Concepts discussed here though simplistic may have far-reaching implications for 

astrophysics and cosmology as well as high energy density (HED) physics.  The authors hope 

that this basic study will provide insights to fundamental questions and engender continuing 

interest and discussion on this subject. 

This work performed under the auspices of the U.S. Department of Energy by Lawrence 

Livermore National Laboratory under Contract DE-AC52-07NA27344. 

  



Figures: 

  

Figure 1.  Left: Feynman diagram for lowest order photon-photon scattering.  Right: Photon-photon interaction geometry 

in the center of mass (CM) frame.  h and k represent incident photons and h’ and k’ represent the scattered photons.  In 

the CM frame, all interacting photons possess the same energy. 
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Figure 2.  Shown are the integration domains used in the calculations for the collision kernel f based on the values of h, k 

and q (left) and their corresponding integration regions in x-y space (right).  The triangular border of region IV is 

necessitated by energy conservation, as the energy of the scattered photons cannot exceed the total energy of the incident 

photons. 



 

Figure 3.  Plot of the collision kernel f(h,k,q) as a function of the scattered energy q with different energy values for the 

incident photons: (a) h=k=1 (solid); (b) h=3/4, k=5/4 (dashed); (c) h=1/2, k=3/2 (dotted). 



 

Figure 4.  Normalized Maxwell-Boltzmann initial photon distribution satisfying (dashed) versus the Bose-Einstein 

equilibrium distribution (solid).  Photon energy k is measured relative to the electron rest energy.  ξ is a predetermined 

temperature parameter defined as ξ=kBT/mc2. 

 

Figure 5.  The differential rate of change of the photon distribution over time for ξ=0.01.  The characteristic time scale τ0 

is defined by equation (25) evaluated at t=0.  Photon energy k is in fractions of the electron rest energy. 



 

 

Figure 6.  This is a plot of the characteristic time τ(t) defined in equation (25) using model results to show steady increase 

during transient evolution.  τ0 denotes the initial characteristic time evaluated at t=0.  The solid line is a linear fit to the 

numerical data. 
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